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Interaction of solitons with bond defects in discrete nonlinear Schrodinger chains
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The interaction of solitons with bond defects in discrete nonlinear Schrédinger (NLS) chains is investigated.
A perturbed NLS equation is derived on the basis of a microscopic model. Localized soliton-defect solutions
are obtained and their stability is analyzed. Scattering of propagating solitons from bond defects is studied
numerically and a variety of scattering patterns is obtained. A phase diagram is constructed showing the

corresponding parametric regions.
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I. INTRODUCTION

The interaction of solitons with defects and inhomogene-
ities is a problem of continuing interest due to its theoretical
and practical importance. Widely investigated is the interac-
tion of solitons with linear and nonlinear point defects
[1-11]. The role of modified coupling constants (bond de-
fects) on the soliton dynamics has been studied in a few
works [12-15]. Breather trapping in a region of modified
coupling constants has been investigated in Ref. [12] for a
DNA model. In Ref. [13] an inhomogeneous waveguide ar-
ray with a modified coupling constant has been considered
and a perturbed nonlinear Schrodinger (NLS) equation has
been obtained. Localized states in the presence of a power-
law nonlocal dispersive interaction has been studied in Ref.
[14] including both short-range and long-range interaction.
In Ref. [15] low-energy excitations in spin-Peierls chains
with modified bonds have been investigated and bound
soliton-impurity solutions as a function of the lattice size
have been obtained. Interaction of NLS solitons with ex-
tended inhomogeneities with modified dispersion coefficients
has been studied in Ref. [16] and periodically repeating re-
gions of trapping and transmission have been obtained as a
function of the size of the inhomogeneity.

In the present work we investigate in detail the interaction
of solitons with modified-bond defects in discrete nonlinear
Schrodinger (DNLS) chains. The paper is organized as fol-
lows. A NLS equation is derived in Sec. II which includes
three perturbing terms associated with the bond defect. Lo-
calized soliton-defect solutions are obtained in Sec. III and
their stability is analyzed. Scattering of solitons from the
bond defects is studied numerically in Sec. IV and a variety
of scattering patterns is obtained for different soliton veloci-
ties and defect strengths. Section V concludes the investiga-
tion.

II. THE PERTURBED NLS EQUATION

We shall investigate the soliton dynamics of nonlinear
Bose-type excitations in a discrete chain with a modified
exchange interaction (bond defect) between sites 0 and 1.
The corresponding Hamiltonian in the nearest-neighbor ap-
proximation can be written as
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BZ and B, are the corresponding creation and annihilation
operators of excitations at site n, wg is the harmonic on-site
energy (A=1), g is the nonlinearity constant, M is the trans-
fer matrix element between neighboring sites in the ideal
lattice, and wu describes the modification of the matrix ele-
ment between sites 0 and 1 (a single bond defect).

The equations of motion for the averaged amplitudes «,
=(B,) yield
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We shall look for solutions in the form of amplitude-
modulated monochromatic waves

a,(1) = @, (1)e =) 3)

where k and w are the wave number and the frequency of the
carrier wave (the lattice constant equals unity) and the enve-
lope ¢,(t) is a real slowly varying function of the position
and time. In the continuum limit, Eq. (2) transforms into the
following perturbed nonlinear Schrodinger equation for the
envelope:

i— ={wy— w+[M + udx)]cos k}e +i sin k[M

do 1 P
+ u8(0)]— + Z[M + pnd(x)Jcos k— + glofe.
ox 2 ox

(4)

It is worth discussing here some specific features of bond
defects. While linear and nonlinear on-site defects yield
single d-function perturbing terms in the NLS equation, a
bond defect introduces three J-function perturbing terms in
Eq. (4). A noteworthy feature of the bond-defect terms is
their wave number dependence. As the carrier wave number
is related to the soliton velocity, this is essentially a velocity
dependence. In Ref. [13] the role of the bond defect has been
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FIG. 1. Bound soliton-defect solution (5) for (a) A=1 and (b)
A=-1.

reduced to a linear point-defect term and in Ref. [12] to a
second-derivative perturbing term. Equation (4) includes
both these terms in the long wavelength (slow soliton) limit
(k~v<1). However, Eq. (4) includes also a first-derivative
term ~ g sin k8(x) which plays an important role and can
dominate the scattering of fast solitons from bond defects.

III. BOUND SOLITON-DEFECT SOLUTIONS

In the static case k=v =0 the terms ~sin k vanish and for
wide solitons (L> 1) the term &(x)#¢/dx* can be neglected
compared to the term 8(x)¢ as being L? times smaller. In the
present work we shall consider only the case M/g>0, cor-
responding to bright solitons. Investigations of the interac-
tion of dark solitons (M/g <0) with bond defects will be the
subject of another work. Under the above assumptions Eq.
(4) possesses the following bound soliton-defect solution:

X ,
alx,t)=A sech(% + A)e"‘*” (5)
with A, w, and A given by
AZ_ﬂ w=wy+M+—5, A=tanh™'(uL/M)
gL?’ 0 2L '

(6)

For A>0 the function |a(x)| has a single maximum at x=0
and for A<O0 the function |a(x)| has two maxima at x
=+ AL. Note that Eq. (6) implies |uL/M|=1, which is the
necessary condition for the existence of bound solutions.

Further on we shall consider M <0 (positive effective
mass) and g <0 (attractive nonlinear interaction). ©<<0 (in-
creased absolute value of the dispersion coefficient) corre-
sponds to an attractive potential and yields a single-peak
solution [Fig. 1(a), A>0], while x>0 (decreased absolute
value of the dispersion coefficient) corresponds to a repul-
sive potential and yields a double-peak solution [Fig. 1(b),
A <0]. From a classical point of view the double-peak solu-
tion can be seen as two particles at equilibrium in the pres-
ence of a defect-induced repulsive force, balanced by a non-
linear attractive force.

In what follows we present results of numerical solutions
of Eq. (2). In the simulations we used 2000 lattice sites and
periodic boundary conditions. The accuracy of the computa-
tions was controlled through the conservation of the norm
and the energy (the corresponding relative variations were
less than 10~ and 1074, respectively).

It should be pointed out that as follows from Eq. (2), a
single bond defect affects the two adjacent sites and hence it
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FIG. 2. Evolution of the solution (5) with M=g=-0.2 for (a)
L=20, u=0.008 and (b) L=50, w«=0.0032. The time is measured
in units 103/ w,.

is effectively larger in size than a single on-site defect. This
imposes more severe restrictions on the width of the double-
peak bond-defect solutions (5) compared to these for on-site
defects. While the latter are stable for L=10, bond-defect
solutions (5) with L=10 are destroyed. For L=20 the bond-
defect solution exhibits long-lasting shape oscillations [Fig.
2(a)]. We obtained similar shape oscillations when we input
two adjacent linear point defects in the equations. This shows
unambiguously that the oscillations in Fig. 2(a) are a
discreteness-induced effect, which is much stronger in the
case of bond defects compared to single on-site defects. We
obtained unperturbed localized bond-defect solutions for L
=50 [Fig. 2(b)].

Next we studied the stability of the bound soliton-defect
solutions (5) against different perturbations. Our numerical
simulations showed that the single peak solution, which cor-
responds to an attractive bond defect, remains stable for
strong initial perturbations. The double peak solution, how-
ever, which results from a delicate balance between a repul-
sive bond-defect interaction and an attractive nonlinear inter-
action between the peaks, is very sensitive to perturbations.
It should be pointed out that the double-peak solution is
stable only if centered in the middle of the defect bond. In
our case this is the middle point between sites 0 and 1. Small
symmetric initial perturbations, such as wrong input ampli-
tude A’ [Fig. 3(a)] or wrong input peak positions A’ [Fig.
3(b)] induce long-lasting oscillations of the double-peak so-
lution. In both cases the input peak positions differ from their
equilibrium positions. Small asymmetric perturbations de-
stroy the double peak solution. On Fig. 3(c) we have shifted
the center of the input solution from n=1/2 to n=0. It is
seen that in this case the initial solution splits into two sepa-
rate solitons with different amplitudes and velocities. Similar
behavior of the soliton-defect solutions for linear defects has
been observed in Ref. [7].

IV. SCATTERING OF SOLITONS FROM BOND DEFECTS

For a homogeneous chain with ©=0 and M cos k/g>0
Eq. (4) possesses a fundamental bright soliton solution

066604-2



INTERACTION OF SOLITONS WITH BOND DEFECTS IN ...

FIG. 3. Stability of the static solution (5) with L=50 and u
=0.0032 against initial perturbations: (a) wrong input amplitude
A’=1.1A, (b) wrong input peak positions A’=1.1A, (c) shift of the
center of the solution from the center of the defect (n=0.5) to n
=0.
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Note that the soliton velocity v within our model is limited to
|M|. We used the solution (7) as initial condition in the simu-
lations, placed sufficiently apart from the defect. The evolu-
tion of the input pulse depends on the initial soliton param-
eters, the material parameters and the defect strength. In the
long-wavelength limit (k<<1,v~-Mk) we can define three
different energies: a kinetic energy associated with the soli-
ton velocity Ej, a nonlinear (potential) energy related to the
soliton amplitude E; and energy of interaction of the soliton
with the defect E;~ u. For the Hamiltonian (1) and the so-
lution (7), the corresponding energies take the forms

2

M
N, and E;=2N  (8)
2|M|

E, =
k= 612 2L

—N, E,=

where N=2LA? is the norm. The interplay between these
energies governs the evolution of the soliton pulse. Some
general features of the scattering of slow and fast solitons
from point defects have been obtained in Ref. [1]. In the case
of strong nonlinearity the soliton behaves similar to a particle
and it is either transmitted or reflected as a whole with some
emitted radiation. In the opposite case of weak nonlinearity,
the scattering pattern is similar to this of linear waves, i.e.,
the initial pulse is split into transmitted and reflected parts
governed by the corresponding Fresnel coefficients. Investi-
gation of soliton scattering patterns for different defect
strengths has been carried out in Ref. [2] and regions of
transmission and trapping have been obtained. In the present
work we carried out an extensive numerical study of the
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FIG. 4. Scattering of a solitons with L=10 from an attractive
bond defect. (a) v=0.01, u=-0.0028, (b) v=0.01, ©u=-0.04, (c)
v=0.01, wu=-0.0064, (d) ©v=0.015, w=-0.014, (e) v=0.01,
n=-0.01, (f) v=0.01, u=-0.016, (g) v=0.059, ©=-0.066.

scattering of solitons from bond defects for a wide range of
soliton velocities and defect strengths. Most interesting and
rich in evolutionary patterns is the case when E;~|E,|
~|E,|. Typical three-dimensional (3D) plots representing the
different types of scattering from attractive bond-defects are
presented in Fig. 4. A phase diagram in the v—u space,
showing the regions corresponding to the different scattering
patterns is shown in Fig. 5.

In the case of fast solitons and small defect strengths
when E,>|E,| the soliton is transmitted through the defect
with minor perturbations [Fig. 4(a)]. The region correspond-
ing to this type of scattering is marked with (a) on Fig. 5. In
the opposite case of slow solitons and large defect strengths,
when E;, <<
ter that the latter is attractive). The corresponding region is
marked (b) on Fig. 5 and a typical 3D plot is shown in Fig.
4(b). The wide area between regions (a) and (b) corresponds
to E,~ |E,| and involves regions with different outcomes. In
the case of slow solitons, an increase of the defect strength
above the threshold for transmission leads to splitting of the
soliton into a transmitted and a trapped part [Fig. 4(c)]. The
corresponding region is marked with (c) on Fig. 5. A further
increase of the defect strength for solitons with (0.01<<v
< 0.04) yields a region surrounded by dots (d) in which the
initial soliton is decomposed into transmitted, reflected, and
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FIG. 5. Regions in the v—u space corresponding to the evolu-
tionary patterns in Fig. 4, marked by the same letters for
consistency.

trapped parts [Fig. 4(d)]. The transmitted and reflected soli-
tons are wider and with smaller, nearly equal amplitudes,
while the trapped part is narrower, with a larger amplitude
and corresponds to a nonlinear localized mode. For very
slow solitons (v <0.01) there exists a region near the origin
surrounded by dots (e) where the transmitted and reflected
waves decay and only the trapped nonlinear mode remains as
an outcome of the scattering process. The corresponding
evolutionary pattern is shown in Fig. 4(e). Between regions
(d), (e), and (b) lies a region (f) where the incoming soliton
splits into reflected and trapped parts [Fig. 4(f)]. The wide
region (g) on Fig. 5 situated between regions (a) and (b) for
v =0.04 corresponds to splitting of the soliton into a trans-
mitted and reflected parts [Fig. 4(g)]. Due to the higher soli-
ton velocity, no trapped state is excited in this case.

The dashed line v=—u corresponds to the condition for
equal transmission and reflection coefficients for scattering
of linear waves from point defects with strength w. In our
case, this line corresponds to transmitted and reflected soli-
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tons equal amplitudes. This should not be surprising as in
this region |E,|>|E,| and the nonlinear term in the NLS
equation can be neglected compared to the defect-induced
perturbing terms. Thus the scattering of these weakly-
nonlinear waves is governed by the conditions for linear
waves. For weaker soliton velocities and defect strengths, the
nonlinear terms become important, which leads to partial or
complete trapping of the soliton on the defect. Our results
show that the trapped states occur for soliton and defect pa-
rameters near the v=—u line. Thus the condition for trans-
mitted and reflected linear wave with equal amplitudes fa-
vors trapping of the solitons in the nonlinear case.

V. CONCLUSION

The role of bond defects on the soliton dynamics in
DNLS chains is investigated. A nonlinear Schrodinger equa-
tion is derived in the continuum limit, which includes three
velocity-dependent perturbing terms associated with the de-
fect. Bound soliton-defect solutions are obtained analytically
and their stability against initial perturbations is investigated.
The single-peak solution which corresponds to an attractive
bond-defect potential is extremely stable against perturba-
tions. On the contrary, the double-peak solution correspond-
ing to a repulsive defect potential is unstable and it is easily
destroyed by asymmetric perturbations.

Scattering of solitons from bond defects is studied nu-
merically. A rich variety of scattering patterns is obtained in
the case of attractive defects and E,~ |E,|. A phase diagram
is constructed in v — u space showing the regions correspond-
ing to the different types of scattering.
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